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ii CONTENTS

This is an introduction to some of the concepts and resulim@ar algebra
that supplements the course “E2 212: Matrix Theory” offardthe department of
ECE at the Indian Institute of Science, Bangalore durinig2fdl2. The document
is not a comprehensive study of linear algebra. Unlike anthefstandard text
book, | will not attempt to prove every theorem that is statethe document. |
recommend the reader to refer to the class notes for a mareotig coverage of
the subject.



Chapter 1

Vector Space

1.1 Basic Notions

Consider the following set:
R? = {(z1,29) : 21 E R, 9 € R} . (1.2)

The above set is the set of all vectors in a two dimensionabpesce. Now, let us
investigate some of the properties of the B8t If (z1,z5) € R? and(y;,y2) €
R?, then the sum defined b1, zo) + (y1,92) == (1 + y1, 72 + y2) € R
Further,(x1, 22)+ (y1, y2) = (y1,y2) + (71, 72), i.€., the elements 0&? satisfy the
commultativity property. If a vector is enlarged or conteak;tit still remains inR?,
i.e., if (z1,79) € R?, a € R, thena(zy, 12) = (21, 79)a = (awy, axs) € R
Obviously, thezero vector0 := (0,0) € R?. This along with the definition of
vector addition, it is easy to see that the zero vector sdalitive identityelement
of the vector spac®?, i.e., adding any vector to it will not change the vector.
For every vectofx,, 75) € R?, there is a vectof—x,, —,) such that(x,, ;) +
(—x1, —z9) = 0, the identity element. Take three vectrs, x2), (y1, y2), (21, 22)
in R2. Then[(z1, z2) + (y1,v2)] + (21, 22) = (x1,22) + [(v1, y2) + (21, 22)].

Now, it is interesting to see if there are any other sets witsé properties.
We expect that the three dimensional space that we live inldladso have these
properties. But the way we add these vectors are slighthereifit. For ex-
ample (x1, z2, 23), (y1,y2,¥3) € R3, then the sum is defined ds,, 25, z3) +

1
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(y1,Y2,y3) := (1 + y1, T2 + Yo, 3 + y3). Note that the “plus” here is quite dif-

ferent from the “plus” in the case &2. Thus, while defining a vector space it is

crucial to define the “plus” that makes the space a vectoresdaxill leave it for

the reader to convince themselves that by properly defitagddition, additive

identity and scalar multiplication, the spaRé obeys pretty much lik&?.
Consider the following set

R" :={(x1,29,...,2,) i, ERi=1,2,...,n}. (1.2)

Can be think of objects of the formy := (21, 25, ..., z,) as vectors? This mo-
tivates us to abstract all the properties/f. The process of abstraction requires
the following two operations:

¢ \ector addition (the “plus”).
e Multiplication of vectors with scalars.

Now, we state the definition of a vector space.

Definition (Vector space) A sét is said to be a vector space oveiif there exist
maps (the “plus”+ : (V xV) — R defined by(z, y) — x+y, and multiplication
(o, z) : R xV — R defined by(a, x) := ax, satisfying the following properties:

e Ve yeV,o+yeV

There exist@® suchthaVz €¢ V,0+z ==z

Vx € Vthereisay € Vsuchthat +y=0=y+=x

Forallz,y,z € V,we have(z + y) + 2z = = + (y + 2)

Forallz,y € Vandforalla € R, a(z + y) = ax + ay
o lx ==z

e Foralla, f € R, andz € V, we have(af)z = a(fx)

1 will leave it for you to see that the spa@"® behaves likeR?>.
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It is an easy exercise to see that is a vector space oveR by appropriately
defining the above two maps. One might ask whether can weceepiti@R in the

definition above by some other set? The answer is yes if thinaetwe replace
with should satisfies the property of a field. In general, ehdlking about a
vector spacé’, we say thal/ is a vector space over a fiell In the initial part of
this notes, we consider the underlying field to/®éor C in some cases).

Up to this point, we have been giving examples of a vectoreplaat seems
to be a natural extension @&2. However, the following provides an example of
some objects that can be viewed as vectors that are not aausbektension of
R™.

Example: Consider the set of all continuous functions defined'as= { f :

X — R, f is continuou$, whereX := [0, 1] is a non-empty compact set. Sup-
posing that the sef' is a vector space, then we can visualize the functioris &s
vectors. The geometrical viewpoint helps us to understhasde strange looking
objects in a better way! Now, we will see whether the Eeis a vector space
or not. In fact, we should also mention the field over whichketor space is
defined.

Now, we will look at the first property in the definition of a \ec space.
Let f1, fo € F, then we need to find whethei + f, € F or not. Towards
this, let us define the addition dg; + f2)(z) = fi(x) + fa(z) for all z €
X. With this definition, and the property that the sum of comtins function
is a continuous function, it is clear that the sum of two fimes belong toF'.
Taking the underlying field a®, we see that for alb € R andf € F, we
have(af)(x) := af(xz) € F. Now, we define the zero functiamas f(z) = 0
for all z € X. Itis easy to see that this function is the additive identifyn
easy exercise also showg,, f» € F, fi + fo = fo + fi, andVfy, fo, f3 € F,
(fi + f2) + fs = fi + (f2 + f3). This shows that the sét is a vector space over
R.

Consider a vectot := (x1,xs,...,x,) IN R™. This vector can be written
asx = z1(1,0,...,0) +22(0,1,0,...,0) + ...+ 2,(0,0,...,0,1). We call the
set of vectors; := (0,0,...,1,0,...,0), 1in the:"" position,i = 1,2,...,n as
standard vectors. This motivates us to have the followiriopidien.
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Definition Let x,z»,...,x, be any set of vectors in a vector spdcéeverR,
and leto; € R,i =1,2,...,n. Then the vectotv;z1 + asxs + ... + a,z, € V
is called the linear combination of the vectatszo, . . ., z,,.

Another interesting fact about the standard vectors isdhat + ases + ... +
ane, = 0 implies that all the coefficients have to be zero. Geomdlyigameans
that no more than two vectors lie in a plane! This can be géimetbas follows.

Definition We say that the vectors,, xo, . . ., z,, in a vector spac& overR are
linearly independent if for, € R,i=1,2,...,n,

1Ty + oo+ ...+ oz, =0

implies thato; =0 foralli =1,2,... n.

The standard vectors have another interesting propertyattyavector inR™ can
be written as a linear combinations of it, i.e., forall= (z, 25, ..., 2,) INR",

r=x1(1,0,...,0) +22(0,1,0,...,0) + ...+ 2,(0,0,...,0,1).

Definition We say that the vectors,, zo,...,z, In a vector spacé’ over R
spans the vector spaééifforall x € V,da; € R,i = 1,2,...,n such that

T = Q1T + Qo+ ...+ QpTy.

ExerciseProve that ifr,, 2o, . . ., x, Spans the vector space thenuz,, ..., z,,z
also spans the vector spacdor all z € V.

The above exercise indicates that there could be reduretaimcihe spanning
set of vectors. This, however, can be removed one by onewatjet a spanning
set from which removing even a single vector from it will make set loose the
property of a spanning set.

Definition A setzq,z»,...,x, is called a bases vector of the vector sp&cd
the set is linearly independent and spans the vector spacéhe numbem is
called thedimensiorof the vector space.

Now, we ask the following question: Is the dimension uniqiéis requires
us to prove an important lemma called the replacement lemma:



1.1. BASIC NOTIONS 5

UJ

Lemma 1 Replacement Lemma Letvy,...,v, be a set of bases
vectors inV. Letwv be any non-zero vector iif. Then, there
exists a vector; such that(vy, vo,...,v,...,v,) forms a bases.

Proof: Sincev € V andu,..., v, is a bases vector, we have= > " | o;v;
with at least oney; # 0. Without Loss Of Generality (WLOG), let; # 0. This
implies thatv, can be written as

n
v Oéj
v = — — E —j,
(€3] — aq
J_

which is a linear combination af, v, . . ., v,. It easily follows that this set of vec-
tors span the vector spate Next, we will prove that it is a linearly independent
set, i.e.,

Z Brvg + frv =0
=2

implies 3, = 0 for all i = 1,2,...,n. Substituting forv = " | a;v;, we get
Bava + Bsvz + ..., +Bpvn + Bi(oqvr + ove + .. 4 ouy) = arfivr + (B2 +
ag)vg + (B3 + asfr)vs + ..., +(6, + fraw)v, = 0. By linear independence of
U1, ..., 0, We havey; 8, =0, o+ a1 = ... = B, + i, = 0. Froma; 5, =0
implies3; = 0 sincea; # 0. Now, usings; = 0, we have3, + as3; = 0 implies
By = 0, and so on. Thus, all the coefficients have to be zero. Thereioe set of
vectorsv, v, . . ., v, are linearly independentl

In the following, using the replacement lemma, we will prolvat the dimen-
sion of a vector space is unique.

Theorem 1 The dimension of the vector space is unique.

Proof: Suppose for the sake of contradiction let us assume thet dre two
set of bases, say,, ..., v, anduy, ..., u,, m # n. Further, WLOG, letn <
n. Sinceu; # 0, by using the replacement lemma, we can replace one of the
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bases vector i, . .., v,, sayv; with u;. This results inuy, vy, . .., v,, Which is
linearly independent. Similarly, WLOG, replacingby u,, we getu;, us, . . ., v,.
By repeatedly applying the replacement lemma until all thet fiy, . . . , v, are
replaced byuy, ..., u;,, We getuy, ..., Un, Unil, .-, Up. SINCEUY, ..., U, are
assumed to be linearly independent, the veator . ., u,,, vyi1, - .., v, CANNOL
be linearly independent, a contradiction. Therefate= n. [
ExerciselLet V' be a finite dimensional vector space of dimensionThen,
prove that any set of vectors having more thaglements are linearly dependent.
Now, we state and prove the following lemma:

Lemma 2 Bases Completion Lemma (BCL) Any linearly inde-
pendent set of vectors in andimensional vector space can be
extended to form a bases.

Proof: Letvy,...,v,,, m < n be an independent set of vectorslin By
assuming that the bases exjd&t u, . . . , u,, be any bases vector. By replacement
lemma, WLOG, we can replace the first elements of the bases hy, ..., v,
resulting invy, ..., vy, Uy, - - -, U, retaining the bases property. This is indeed
an extension of the,, . . ., v,, to a bases vectorl

The above theorem relied on the fact that the bases exisish wbems ques-
tionable. However, thanks to the following remarkable teeowhich proves the
existence of bases.

Theorem 2 In any finite dimensional vector space, there exists a

bases.

Proof: The proof is omitted for the time being. In fact, the proofaotves using
the Zorn’s lemma in set theory.

Exercise Prove that any vector in a finite dimensional vector spacebsan
uniquely represented as a linear combination of basesngecto

From the title, one may wonder what a vector space has got teitthoma-
trices. Recall from your undergraduate matrix theory thatij** element of the
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matrix A € R"*™ denoteds;; € R. Denote the set of all matrices of dimension
m x n by M,, . Itis an easy exercise to show that it is a vector space Bveir
dimensionmn. However, this turns out to be a not so elegant way of looking a
matrices in vector space theory. In the next chapter, weshiw that the study
of vector spaces is important by viewing matrices as a reptation of a linear
map for a given bases.
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Chapter 2
Linear Transformation

Consider the following set of linear equations:
y = Az, (2.1)

wherex € R" and A € R"™*". Naturally, in these problems, one is interested
in finding the solution forr. The existence of the solution to the above problem
depends on the invertibility of the matrik If at all the solution exists, one way to
solve the above problem is to reduce the matrix to a simpten 8uch as diagonal,
upper/lower triangle form etc. Now, the following questarise:

e When is the matrix4 invertible?
e Is it possible to convert the matrix to a diagonal form?

e Is it possible to convert the matrix to an upper/lower triangle form?

To answer these questions, we will take a slightly geneaaidgioint of view-
ing the matrices as linear transformations, which is dortberfollowing section.

2.1 Linear Transformation and its Properties

First, we give a definition for linear transformation.

Definition Amap7 : V — W between two vector spacésandWV is said to be
linear if the following property is satisfied:

9
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o T(avy + fPvy) = aTvy + BTvs foralla, f € R

Now, we return to the question that we posed in the beginnfrifie chapter:
when does the inverse f@rexists? Intuitively, for all vectow € W, there should

be a corresponding elementc V that the linear transformation maps to, and
it should be unique. First of all, the question makes sensigeispacdl is as
big/small asV’. Otherwise, there is no hope of finding the inverse. The above
intuition brings in the notions of surjective mapping ancc@ne mapping, as
defined below.

Definition Amap7 : V — W is said to be surjective if for every € W, there
exists an element € V' such thatl'v = w.

Definition Amap7 : V — W is said to be injective (or one-one) ifforall € V/
anduvy, € V, Tvy = Tvy impliesv; = vsy.

Definition The image ofamaf' : V' — W is defined as
Imag(T) :={Tv:v eV}
Definition The kernel or Null of amafi’: V' — W is defined as
Null(T) ={v eV :Tv=0e€ W}

It is an easy exercise to show thatag(T') is a vector space (Exercise). But
note that/mag(7) € W. This motivates us to define another notion called a
subspace.

Definition Let V' be a vector space. A spateC V is said to be a subspace if
forall uy,us € U = auy + Puy € U forall o, 8 € R.

Exercise: Check that the above is a valid definition for subspaces.

As noted earlier, the inverse of a map exists if and only ifrtte@ covers the
entire range and the mapping is unique, which is the essentte dollowing
theorem.
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Theorem 3 A mapT : V — V is invertible if and only if it is surjec

tive and injective, i.e., it is bijective.

Proof: Directly follows from the definition of surjective and irgjive map-
pings.]

Now, one may wonder what is the use of the above theorem. tnifaarns
out that given a transformation, it is hard to directly vetiiese properties. This
motivates us to investigate some other properties of a najirtiplies invertibility
and it is easily verifiable. Instead of trying out differehirtgs, let us see whether
there are any other properties of a map that implies that tq@issurjective and
injective. Let us first investigate the property of a map bemective.

Suppose let the map be injective. Then, for all forwglle V andvy, € V,
Tv, = Ty impliesv; = vy. Let us also assume that the map is linear, we have
Tvy =Tvy = T(v; —vy) =0 € W. Thisimpliesthat; — v, =0€V = v =
vo; the map is injective then the Kernel contains only the zex@or. We state this
result as a theorem below.

Theorem 4 If the linear magl’ : V' — W is injective thenVull(T) =
0eV.

Now, let us use the above argument in the reverse direct@mnlgtNull(T) =
0 € V. Letvy,v, € V be such thatl'v; = Twv,. From linearity, this implies
T(vy —vy) = 0 € W. By the assumption tha¥uli(T) = 0 € V, we have
v1 = v9. This proves that ifVull(T) = 0 € V, then the map is injective, which is
the essence of the following theorem.

—

Theorem 5 The linear mapl’ : V' — W is injective if and only i
Null(T)=0¢€ V.

Since Null(T) is a subspace df, one way to investigate the invertibility of
the map is to see how big Sull(T), i.e., what isdim(Null(T))? Now, we will
answer this question in the general situation.

SinceNull(T) is a subspace df, letv, . . ., v, be a bases vector &full(T).
By the BCL, this can be extended to a bases of the entire 3pa¥é_OG, let this
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bevy, ..., v, Umits .-\ Uman, 1.€., the dimension of is m + n. Now, we know
thatTv; =0 € Wforalli =1,2,...,m. Consider

TUm+1, TUm+2, . 7TUm+n,

which is in the range space @f. Since range space is a subspace, we expect
that the bases should be relatedTto,, .1, Tvn12, ..., TUmin. NOW, letw €
I'mag(T). Then, there exists a vector:= > """  «au; € V such thatl'v =

w. This implies thatl'v = """ «;Tw;, which is a linear combination of
Tvmi1, TOmsa, ..., Tvme,. Since every vector in the range space can be written
as a linear combination gfl"v,, .1, Tvm+2, - - -, TUman},

{Tvms1, TOm12, - s TOmn}

spans/mag(T). Naturally, we ask whether this set of vectors form a based¢ O
condition that we need to check is the linear independenagition. Let

m—+n
i=m-+1
By linearity,
m+n m+n
i=m-+1 i=m+1
This implies thatzz’:;ﬁrl v; = 0 (why?). By linear independency of the set
{Um-i-la e avm+n}>
we haves/s = 0. This proves that the vect§f v, 1, Tv 12, - . ., TUm1n } fOrms

a bases of the image @f. Now, from the above, we have that the dimension of
Imag(T) is n, the dimension of the Kernel @f is m, and the dimension df is
m + n. Thus, we have the following theorem:

Theorem 6 For every linear mag@' : V. — W, we have

dim(Imag(T)) + dim(Null(T)) = dim(V).
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Now, if Ker(T) = 0 € V, then the above theorem implies thétn (1) =
dim(Imag(V)). If V.= W, thendim(Imag(V')) = dim(V'), the entire space.
Thus, the map is both injective and surjectivesiér(7) = 0 € V andiW = V!
Thus, we have:

—h

Theorem 7 A linear map7' : V — V is invertible if and only i
Ker(T) = 0.

Remark:We will define the dimension of the image of a linear map asait,
denoted-ank(T'). The above theorem can be restated as rank plus nullity opa ma
T is equal to the dimension of the vector sp&teAlthough, we promised to arrive
at a condition that is easily verifiable, it looks like the ddion Ker(T) = 0 is
hard to check. Instead, let us check if we can say somethiagtdber(7") #

0. This implies that there exists at least one veatoe V', v # 0 such that
Tv = 0. This can be written in a slightly different forffi(v — 0v) = 0. Those
who are already familiar with the notions of eigenvectord aigenvalues would
immediately recognize that the above is a problem of findihgtiwver a map has
zero as its eigenvalue or not. This seems promising as it atada solving a
polynomial! At least now, we have some hope that ther-(7") is computable,
and we can hope to answer whether the inverse of a map existg.oWith this
hope, we continue to study some additional properties ofeali map and relegate
the study of eigenvectors and eigenvalues to the next achapte

Note that all matrix transformation of the ford: comes under linear trans-
formation. Is the converse true? In the following, we showat tiis is indeed
true!

2.2 Matrices and Linear transformations

In this section, | will excuse myself by giving a “not so” rigus explanation
of why a matrix can be thought of as a representation for atitr@ansformation
in a vector space with a fixed basis. Consider a linear ffiapl’ — W. Let
{v1,...,v,} and{w, ..., w,} be a set of bases vectors fgrand W, respec-
tively. Now, consider any vectar € V. Now, let us investigate the action6fon
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v. Sincev € V, we havev := " | o,v; for someas € R. Now, by linearity,

we have . .
Tv = TZaivi = ZaiTUi.
i=1 i=1

Note thatT'v; € W, and therefordv; := Z;”zl Bi;w; for someg;; € R. Upon
substitution, we have

Tv:Zai

n m
i=1  j=1

Bijw; = Z @i fijw;.
Z'hj

Now, sincel'v € W, we havel'v := "% | yw, forsomey; € R,i=1,2,...,m.
Equating both, we get

Z Oéiﬁijw]' = Z ’)/Z"LU]'.
%7 7j=1
This implies that

Z iy = Z i
J J

This in matrix form becomeB8A = I', whereg;; is theij—th entry of B € R™*",

«; is thei™™ entry of A, and~; is the ;" entry of I". For a fixed bases vector, the
variables that depend on the vectas .4 andI’, and not the matrix3. Thus, for

a given bases, any linear transformation seems to have &mgtresentation.
Now on, we can think of linear transformations as matriceh wifixed bases. We
state this result as a theorem. We leave it for the readesetthesabove discussion
as a hint and rigourously prove the following theorem.

Theorem 8 There is a one-one correspondence between the set of all
linear maps from/ to W of dimensions: andm, respectively, and
the set of alln x n matrices.

With this remarkable theorem, all the properties mentionettiis book thus
far holds true for the corresponding matrices also. In otvwds, we can replace
linear transformation everywhere with matrices in this kloblow, let us return
to the question that we posed in the beginning of this chapéerwhen does the
inverse of a matrix exists? From theorem 7, it amounts tokihgdf there is a
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nonzero vector € R™*™ such thatAz = 0. By stacking the columns of the
matrix A asA := [a; az ... a,), and writingz = [zy,...,2,], the equation
Az = 0 can be rewritten a§ ", z;a, = 0. This is just the linear combination
of the columns of the matrix. Thus, the matrix inverse exilsend only if the
columns of the matrix are linearly independent. This linedependency of the
columnsis defined as column rank. Similarly, one can defiaedw rank. Is there
any relationship between column rank and row rank? In theelegve address
this question.

First, we observe the following interesting fact. For anytmmaA, the linear
map7 : R™™ — R™™ defined byT'(e;) := a;, wheree; is the standard bases
vector, has one-one correspondence with the matrix for a fixed atdnohses
(check!). Now, we can define the rank of the matd»as the rank of the corre-
sponding linear transformation, which is equal to the disi@m of the image of
T. Note thatTe;, i = 1,2,...,n must span thédmag(T). ButTe; = a;. This
implies that the rank ofl is equal to the number of linearly independent columns
of the matrixA. Now, is this equal to the number of linearly independentsaiv
A? The answer is yes:

Theorem 9 Row rank of any matrixl € R"*" is equal to the column
rank of A.

Proof: Let the column rank ofi ber > 0. Letcy, ..., ¢, be abases for the column
space, and lef’ := [cy, ..., ¢, ] € R™". Then, each columns of can be written
as a linear combination of the bases. In the matrix fordngan be written as
A = CR, whereR € R™*" contains the coefficient of the bases expansion. Note
that the column rank af’ is ». Now, each rows of the matrix can be written as a
linear combination of the rows @t with coefficients being the elements frath
Thus, the row space of is contained in the row space & Thus, row rank of
A'is less than or equal to the row rank 8fwhich is at most. This implies that
the row rank ofA is at most equal to which is equal to the column rank df by
assumption. Now, applying the same argument to the traesplag completes
the proof.(J

1This consists of one in thé&" position and zeros in the rest of the positions
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Remark: This proof seems a little constructive in nature. There m@e
elegant alternative proof of the above theorem which willifteoduced in the
next chapter.

Since we now know that the column rank and row rank are equatam pose
the following questions:

e what happens to the rank of a matrix when it is multiplied bgtaer matrix
of full rank?

e what happens to the rank of a matrix when it is multiplied bgtaer matrix
which is rank deficient?

e what happens to the rank of a matrix by additive perturb&tion

We answer these questions in a more general fashion in tiseguént theorems.

Theorem 10 Let A € R™™ and B € R™*P. Then,

rank(AB) < min{rank(A), rank(B)}.

Proof: ConsiderC' := AB. From the proof of theorem 9, the column rank of
C'is at most equal to the column rank df which is equal ta-ank(A). On the
other hand, the row rank @f is at most equal to the row rank &, i.e.,rank(B).
Combining the two, we get the desired inequalify.

The above theorem says that by multiplying a mattixvith another matrix
can only reduce the rank of the mateix Now, we will answer the last question
posed above.

Theorem 11 (Rank Inequality Theorem (RIT)) Let € R™*™ and
B € R™". Then,

rank(A+ B) < rank(A) + rank(B).

Proof: We prove this result in stages. First, consider

rank(A+ B) := dim{Imag(A+ B)} = dim{Ax + Bx : x € R"}.
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Now, let us investigate the set
{Ax + Bz : x € R"}.

Note that/mag{A} andImag{ B} are subspaces. The detx + Bz : v € R"}
can be viewed as the sum of two subspaces. This occurs friggueninear
algebra and it deserves a definition.

Definition Let U and W be subspaces df. Then the direct sun/ & W is
defined as
UapW ={ut+w:uelUweW}

Verify that the direct sum is indeed a subspace. Also, na@etkie intersection
of subspaces is again a subspace. Let us denote the iniendgct/ N W = {z :
reUNW}CV.

Let us denote the image of and B by U and W, respectively. Now, con-
sider the bases,, ..., x; of U N W. This bases can be extended to the subspace
UorWorU @ W. Let us denote the extension of,...,x; to U andWW by
By = {x1,...,x, 241, s T}y @nd By = {1, ..., 2, T141, . . ., Tn}, FESPEC-
tively. Now, consider the union

BIUB2 = {.Tl,...,l’l,$l+1,...,l’m,.i’l+1,...,.fn}.

We claim that this is a bases bf® WW. Supposing that this is true, then the proof
is complete by a simple observation tha& | | Bs| = |Bi| + |Ba| — |B1[) Bal,
which implies that B, | By| < |By| + | Bal.

Clearly, B; | B, spans the direct sum. Therefore, we need to prove that it is
linearly independent. Consider the linear combination

ZO[Z'ZE'Z‘ + Z ﬁjfj = 0.
i=1

J=l+1
Now, we prove that all the coefficients have to be zero. Forsidles of
contradiction, let us assume that some# 0. Then, we can write the vector
Tp = o | Doy i+ D @»jj}. This means that the vectot is in the

a;
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span ofB; | Bz/x;. Thus,B; |J B2/ x; still spansU & W. However, by remov-
ing z; from B;, any vector of the formu + 0 € U & W cannot be written as
a linear combination ofx1, ...,z x4, . . ., T, Tig1, - - -, Tn }/2;, @ contradic-
tion. Therefore, none of the,s can be nonzero. By a similar argument, it is easy
to see that none of th& s can be nonzero. Thus, all the coefficients have to be
zero, which proves linear independentcy.

Now, as a relatively straight forward extension of the rardquality theorem,
we have:

Theorem 12 Let A and B be two matrices oveR of same dimen-
sions. Then,

|rank(A) — rank(B)| < rank(A — B) (2.2)

Proof: Writing (2.2) in its glory, we have
—rank(A — B) < rank(A) — rank(B) < rank(A — B) (2.3)

Let us first prove the second inequality, ilnk(A) < rank(A—B)+rank(B).
Note thatA = A+ B — B. From theorem 11, the rank af can be upper bounded
as

rank(A) = rank(A+ B — B) < rank(A — B) + rank(B).

This proves the second inequality above. Now, writihg= B + A — A, the rank
of B can be upper bounded as

rank(B) < rank(B — A) + rank(A).

Sincerank(B — A) = rank(A — B), the first inequality follows[]
The following is a simple result which follows directly bying A = A+ E —
E, and then using the RIT.

Corollary 1 Let A € R™™ with rank(A) = r and E € R"™™ with
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rank(E) = k,r < n, then

r—k<rank(A+FE)<r+k. (2.4)

Yet another theorem.

Theorem 13 Let A € R™*", and letB € R"*? be such thatiB = 0.
Then,

rank(A) + rank(B) < n.

Proof: The equalityAB = 0 implies that the columns of the matrix are in
the null space ofd. This implies that the image space®fis in the null space of
A. Thus,Null(A) C Imag(B) implies that

dim(Null(A)) < dim(Imag(B)) = rank(B).
Applying the rank-nullity theorem to the map: R™" — R?, we get
rank(A) + dim(Null(A)) = n.

Usingdim(Null(A)) < rank(B), we getrank(A) + rank(B) < n. O
Let me state another theorem mainly to illustrate some uipedof techniques
in linear algebra.

Theorem 14 Let A € R ", and letS be a subspace q®". Let us
denote the image of underS as

A(S) :={Az: x € S}.

If Null(A) NS = 0, thendim(A(S)) = dim(S).

Proof: First, it is easy to see that(S) is a subspace. Therefore, there ex-
ists a bases of, sayuz,...,z,. OperatingA on these bases vector, we get
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Axy, Az, ..., Az,. Now, the claim is that these set of vectors form the bases of
A(S). First, we prove that the above set of vectors spa@S). Consider any
vectory € A(S). Sincey € A(S), there exists a vectar € S such thaty = Ax.
Butz :=Y"" , o, for somea)s € R. Thisimpliesthay = Az = >""" | a; Ax;.
Note this is a linear combination olxz;, Az», ..., Azx,. Further, any vector
y € A(S) can be written in this form. Thuslzy, Ax,, ..., Az, spansA(S).

Next, we will show that this set of vectors are linearly indegent. Consider
the following linear combination:

=1
= A Bui=Ay=0 (2.6)
=1

for somey = " | Biz;. Thus, allg;’s are zeros provided the vectgris zero
which happens only when the null space is zero. That i§ifl(A)(S = 0,
then) " | B;z; = 0, which implies that3; = 0 forall i = 1,2,...,n by linear
independency ok, ..., z,. Thus,Az,..., Ax, are linearly independent, and
therefore it forms a basesl

For any given matricest € R"™*"™ and B € R"*P, consider the following

matrix:
M = 40 (2.7)
0 B

It is interesting to see what is the rank/af in terms of the ranks ofl andB. We
will state this result as a theorem below:

Theorem 15 For any given two matricegd € R™*" and B € R"*?,
we have
A0

rank N = rank(A) + rank(B). (2.8)

Proof: Easy exercise.]
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Next, let me illustrate the use of the above theorem. Considefollowing:

I, 0
rank ( 0 AB ) =n+rank(AB). (2.9)

Now, supposing that we carry out a transformation of the maising a set of
rank invariant transformation that results in a differerdtrix but with a similar
structure as above, we get a new set of inequalitiest us try this on the above
matrix itself.

(F2)-(0) () (2h) e
0 AB A AB A0 0 A

Since the above is a rank invariant transformation, we have

I, 0 B I,
rank = n+rank(AB) = rank > rank(A)+rank(B).
0 AB 0 A

(2.11)
This leads to the following theorem:

Theorem 16 (Frobenius inequality) For any two matrices € R™*™ and B €
R"™*P, we have the following rank inequality:

n + rank(AB) > rank(A) + rank(B).

Now, you see how to prove some of the not so trivial rank inéties. Let us
see if we can give a more sophisticated inequality. Towdrndsconsider

( B0 ) 12
0 ABC

The rank of the above matrix igink(B) + rank(ABC'). Let us do some elemen-
tary transformation on the above matrix as follows:

B 0 B 0 B —-BC BC B
— — —
0 ABC AB ABC AB 0 0 AB

(2.13)

2Can you figure out the transformation that is done below?
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Thus, we have

B
rank 0 = rank(B)+ rank(ABC)
0 ABC

0 AB
> rank(BC) + rank(AB).

= rank ( Bo B) (the last matrix in (2.13))

This is summarized in the following lemma:

Lemma3 LetA €¢ R™*", B € R™"*?, andC € RP*4. Then,

rank(B) + rank(ABC) > rank(BC) 4+ rank(AB).

Lemma 4 LetA € R™*"™. Then, prove that

rank (I, — AAT) — rank(I, — ATA) = m —n.

Proof: Consider the following matrix

. T
M = ( I = AAT0 ) : (2.14)
0 I,

Note thatrank(M) = n+rank(7,, — AAT). Now, we will carry out the following
elementary transformation on the matfik

I, — AAT 0 I, — AAT A
M = —
0 I, 0 I
I, A I, 0 I, 0
— — — = N
AT T, AT I, — ATA 0 I,—ATA
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Note that the matrixV has the same rank as that/of, and thereforeank(M) =
n + rank(I,, — AAT) = rank(N) = m + rank(I,, — AT A). This completes the
proof. [

The following section can be skipped in the first reading.

2.3 Isomorphisms and Homomorphisms

Consider two vector spacésandlV both of finite dimensions over the same field
F. Note that till now we have been considering a real field. Hmueextending
the study of linear operators to any other field is not difficul

Now, let us consider the special case of the dimensioris ahd IV being
equal ton. By the existence of bases theorem, there are two sets o bastors
By :={uy,...,u,} andBy := {wy, ..., w,} of U andWW, respectively. Now, one
can define a map as follows:

f:U—-W (2.15)

such that
e it maps bases to bases, i.£(1;) := w;, i = 1,2,...,n,and

e it preserves the structure of a vector space, f.@w; + fuz) = af (u1) +
Bf(ug), u,us € U foranya, 3 € F.

With the above map, consider any veciorc U. This can be written as
uw =Y " o;u; for someas € F. With this it is easy to see that the inverse of
the map exists, which is explained as follows.

For any vectorw € W, we have

=1
= Y Bif(w) (2.17)
i=1

= f (Z m—) (2.18)

= f(u), (2.19)
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whereu := " |, oyu; € U. In other words, given any vector in € W, there is

a corresponding vectar € U that the function maps to. This implies that the map
is surjective! Is the map one-one? For any two vectoasda in U, f(u) = f(u)
impliesu = u (prove this!). This implies that the map in one-one. Thus,ittap

is bijective. It is not just bijective but also preserves steicture of the spaces.
To put it differently, all that the may is doing is to in some sense relabel the
vectors inU. The key property that preserves the structure is the sgmaperty

of the map. We give a name to such mappings, which is definedllasvé for
two vector space§ andV.

Definition Amap f : U — W is said to be an isomorphism if
e itis one-one and surjective, and
o f(auy + Puy) = aof (ur) + B f(uz), us,us € U foranya, 5 € F.

We say that the two vector spac€sand W are isomorphic if there exist a map
from U to W that is an isomorphism.

Exercise Prove that any finite dimensional vector spacef dimensionn
over a fieldF is isomorphic tarF”.

Exercise Prove that if an isomorphism exists between two finite disiemal
vector spaceB” andF™ over a fieldF, thenm = n.

The concept of isomorphism helps us to visualize any finitgeglisional vector
space as a bunch of elements contained in the field over winectplace is defined.
Note that the above definition of isomorphism relies on the thaat the operator
is bijective. However, in most cases, this may not be trueer@fore, relaxing
the definition by removing the condition of the map being diijee results in the
following.

Definition (Homomorphism) Amagf : U — W is said to be a homomorphism
if flauy + Bug) := af(uy) + Bf(uz), up,us € U foranya, g € F.

Note that the above preserves algebraic structure. Alaoniip is isomorphic,
then it is also a homomorphic. Let us denote the set of all hoorphisms from
U into V by Hom(U,V). In the following section, we shall study moreoabthis
set.
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2.4 Dual Space

Intuitively, one possible way to learn more about a vect@acspunder considera-
tion is to take an operator and operate on the vector spaceemnthe result. In
some sense, each operator will give us different infornmediimout the space. If we
have enough number of such operators, we expect that wecshewlble to say a
lot about the space. Also, it provides a convenient tool wlmere can deduce the
property of the space by studying its operators providedferators are more
amenable to analysis.

Consider for instance the set Hom(U,V). Now, we shall seettiia can be
given a vector space structure. In order to do so, we shouldedéhe binary
operator+ over it. The “plus” is defined a&l} + 73)(u) := T’ (u) 4+ T (u) for all
u € U, and for allTy, T, € Hom(U,V). Let us define the scalar multiplication as
(aT)(u) := aT'(u) for all T € Hom(U,V), andu € U. With this definition, it is
easy to see that Hom(U,V) is a vector space @ew~hich is stated as a theorem
below.

14

Theorem 17 The set Hom(U,V) is a vector space owewunder the

binary and scalar operations defined above.

Since Hom(U,V) is a vector space, a natural thing to do is testroct a bases
for it. In order to understand the construction of bases, wkerestrict to the
following special cases d@f andV'.

Let the bases off andV be {u;, us, us}, and{wv, v, }, respectively. Now, we
say thatl}, ..., Ty is a bases of Hom(U,V), if for all' € Hom(U,V), we have

N
T = Z a; 15,
i=1

andTi, ..., Ty is alinearly independent set. This means that

N N

Tu= (Z a;T)u = Z a; Thu
i=1

1=1
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forallu € U, and
N
Zﬁz’TiU =0
=1

forallu € U impliesg; = 0foralli =1,2,..., N. Now, we will construct a set
of bases that spans Hom(U,V). LBt:= {73, ..., Ty}, and see what is it that is
required for this to be a basis. First of all, we need

o Tu; C span{B},i=1,2,3forall T € Hom(U,V), and

e B should be linearly independent.
Now, let us investigate the first requirement fot 1,2, 3 as follows.

e T € Hom(U,V), T'u; C span{B}, which can be written as

2 N
Tu, = Zﬁlivi = Z o iy (2.20)
i=1 i=1

Now, the equality above is possiblelifu, = vy, Tou; = v, Tjuy = 0 for
all: = 3, .. .,N, andﬁn = 11, 612 = (¥12.

e T € Hom(U,V), T'uy C span{ B}, which can be written as

2 N
Tuy = Zﬁm’vi = Z v Tius. (2-21)
i=1 i=1

Now, the equality above is possiblelifus, = vy, Tyus = vy, Tyus = 0 for
alli = 5, .. .,N, andﬁgl = (91, ﬁgg = (x99.

e T € Hom(U,V), Tus C span{B}, which can be written as

2 N
Tuz = Zﬁ:ﬁvi = Z aziTius. (2.22)
i=1 i=1

Now, the equality above is possiblelifus = vy, Tgus = vq, Tyuz = 0 for
alli = 7,..., N, andﬁgl = 31, (32 = Q3.
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From the above, it is easy to see that. . ., Ti is sufficient to span Hom(U,V).
Therefore, letV = 6. Now, from the above discussion, let us recall the condstion
that are required for the sé& with N = 6 to be a bases:

e Tiup = vy, andT1u1 =0,

Tou, = v, andT2u1 =0,

Tsus = vy, andT3U2 =0,
o Thug = vy, andT4U2 =0,

o Trus = vy, andT5U3 =0,

Teus = vg, andT6U3 = 0.

Thus, assuming the above conditions Bn it is easy to see that it spans
Hom(U,V). We will now investigate the linear independen€édq ..., T;. Here,
we need to prove thaZle GiTiu = 0 for all u € U implies 5; = 0 for all
i=1,2,...,6. Picku = uy, then, from the conditions df, . . ., T, we have

6
> BiTus = 0= Bioy + Bavy = 0. (2.23)

i=1

By linear independency af;, v,, we have3; = (, = 0. Thus, the above equation

becomes ]
=3

for all u € U. Now, picku = us. Then,

6
ZﬁzTﬂm = 0= B3v1 + [avs = 0.
i1

This implies that3; = G, = 0. Continuing this process further, it is easy to see
that all /s have to be zero. This proves linear independency. Thus, ., T
forms a basis of Hom(U,V) fodim(U) = 3, anddim(V') = 2. Note that the
number6 = 3 x 2 is the product of the dimensions of each vector spaces. This
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can be easily generalized to aiyandV” of finite dimensions, which is the essence
of the following theorem.

Theorem 18 Let U and V' be two vector spaces of dimensionsand
n, respectively. Then, Hom(U,V) is a vector space of dimansio

Proof: Exercise. Hint: Try to imitate the proof form = 3, andn = 2 case
described above.
As an important corollary, we have:

Corollary 2 LetV be a vector space ovérof dimensiom. Then,
Hom(V,F) is a vector space of dimension Further, V' and
Hom(V/, IF) are isomorphic to each other.

Proof: From Theorem 18, the dimension Bbm(V,F) is equal ton. The
isomorphism follows from a previous exercise.
Now, let us investigate the above corollary even furthery A&actorv € V

can be written a® = ) ", oyv;, Wherevy, ..., v, iS a bases vector df. Let
F € Hom(V,F). Consider

F(v) = F) o (2.24)
= &iF, (2.26)

where® := (ay,...,a,), F := (F(v1),..., F(v,))’, ande represents the usual
dot product orR™. Note that the vectdr is fixed for a given bases. Also, itis easy
to check that this representation is unique given the basgenrs. Thus, not only
that all the linear operators iom(V, F) can be written as a dot product but also
there is a one-one correspondence between the elemehtsantl Hom(V, F).
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Therefore, it is interesting to see if this can be generdlieeen further. This
requires us to generalize the notions of the dot product;hvisidone in the next
chapter. The spacdom(V,F) is special in linear algebra, and has a name to
it. It is called the dual space, as it behaves likebut the objects appears to be
completely different.

Definition (Dual space) IfV is a vector space ovef, then its dual space is
Hom(V,TF). The elements of the dual space are cdlilegar functionals

In the following chapter, we will generalize the notions ot groduct and the
distance to an arbitrary finite dimensional vector spaces.
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Chapter 3
Inner Product and Normed Spaces

Consider two vectors := (z1,z3) andy := (y1,y2) in R%. The inner-product is
defined as
(x,y) := 2191 + T2Y2. (3.2)

Now, let us investigate the properties(af y), which are listed below:
1. (x,x) >0, forallz € R", and(z, z) = 0 if and only ifz = 0.
2. (axy + fra,y) == a{x,y) + B {xy,y) forall o, 5 € R.
3. (z,y) = (y,x).

In the case where the underlying field is complex, the abofiaitien of the
dot product of two vectors := (x1, z5) andy := (yy,y») in C? is modified as

(T,9) == 2191 + T2¥o. (3.2)
Now, let us investigate the properties(af y), which are listed below:
1. (x,x) >0, forallz € C*, and(x,z) = 0 ifand only ifz = 0.

2. <Oé._'l§'1 + ﬁl’g, y) =a <..'lf1,y> + B <..'lf2,’y> for all a, ﬁ e C.

3. (z,y) = (y,2).

31
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Consider two vectors := (z1,23) andy := (y1,v2) in R?. The distance
betweenr andy denotediist(z, y) is calculated using the following formula.

dist(x,y) ==/ (x1 —y1)2 + (12 — y2)2. (3.3)

From this the length of any vectaris defined agen(z) := dist(0, x). Itis easy
to see thaten(x) : R* — RT satisfies the following properties:

1. len(z) > 0 for all x € R? with equality if and only ifz = 0.
2. len(z) + len(y) > len(z + y) forall z,y € R2,
3. len(ax) = |a|len(z), for all z € R2.

The above can be easily generalizedRb6 as follows. The functiorlen(x) :
R"™ — RT is a length function ofR™ if it satisfies the following properties:

1. len(x) > 0 for all z € R™ with equality if and only ifz = 0.
2. len(x) 4+ len(y) > len(x 4+ y) forall z,y € R™.
3. len(ax) = |a|len(x), for all z € R".

Generalizing the notions of distance and inner product taraitrary vector
space over a real or a complex field is done below.

Definition (Norm) A function on the vector spadéoverF denoted| * || : V —
R* is said to be a norm if it satisfies the following properties:

1. ||z|| > 0 for all z € R™ with equality if and only ifz = 0.
2. [lzl| +[lyll = llz + yll forall z,y € R".

3. |laz|| = |a||z], for all z € R,

Definition (Inner-product) A function on the vector spakeoverF (F = R or
C) denoted(x,*) : V x V — F is said to be an inner-product if it satisfies the
following properties:

1. (z,z) > 0,forallz € V,and(xz,z) = 0 if and only ifz = 0.
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2. (o) + By, y) = a(r1,y) + F (r,y) foralla, f € F.

3. (z,y) = (y, z).

Note that in the above definition, we have used the fact tleatdmjugate of any
real number is the number itself. Recall that the dot produ®”™ can be used
to measure the distance between two vectoendy by simply taking the dot
product of the difference, i.e(z — y) e (x — y). In other words, the dot product
induces the Euclidean distance notion in the real space., blansider a general
inner product spacé, (x, *)). A natural question to ask is if/ (x, ) is a norm.
Let us check all the properties of the norm.

The first property of the norm directly follows from the defion of the inner
product. Now, let us check for the triangle inequality. ety € V. Then, we
need to prove the following:

2+ yll* < ll=l* + [yl (3.4)
which is equivalent to proving the following:
(w+y,x+y) <(z.2)"+ (y9) (3.5)

Using the definitions of the inner product, the right han@ sicthe above equation
can be simplified as follows

(z+y,z+y)’ = (x2)+ (Y + ({y2)+ Y y)° (3.6)
= |lzlI* + 2 (z,y) + ly]*. (3.7)

The proof would be complete {fr, y) < ||z||||y| is true. This is because

)1 +2 (2, 9) + lyl® < 2l + 2l /vl + ylI* (3.8)

= (=l + Iy ) (3.9)

Now, the goal is to check ifz, y) < ||z||||y| is true. This is the famouSauchy-
Schwartanequality.
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Theorem 19 Let(V, (x, x)) be an inner product space. Then, forally € V', we
have

(@, y) < |l=[lllyll- (3.10)

Proof: Let us first assume thatandy are unit norm vectors. Then, we need to
prove that(z, y) < 1. Note that there is nothing to prove if one of the vector is a
zero vector. The inequalityr, y) < 1 can be proved as follows:

0 < (x—y,z—y) (3.11)
=zl + lyll =2z, ) (3.12)
= 2—2(z,y) (3.13)
= (z,9) > 1. (3.14)

Consider any pait, y in V, not necessarily unit vectors. Consider= ﬁ and
Y= ”73’” Sincez andy are unit vectors, usinge, y) < 1 for unit vectors, we get

(@, y) < lllyll. O (3.15)

Now, we know that in any inner product space, the inner prbdhwces a
norm. One natural question to ask is if we can say whether @ mmduced by
an inner product or not? The answer is the following:

Theorem 20 Let(V (x, %)) be an inner product space. The norfx(]) is induced
by the inner product if and only if it satisfies the followirgrallelogram identity

Iz +ylI* + llz — ylI* = 2(ll=]* + lly[I*) (3.16)

forall z,y € V.

Proof: If norm is induced by an inner product, then the above eqoas valid,
which is easy to verify. However, the proof of the conversaeas-trivial and is
left as a reading exercisgl
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3.1 Orthogonality and Orthogonal Projection

Inner product not only induces a norm that brings in the motiblength but also
enables us to talk about the angles between two vectors. Xaonme, inR>
with the usual dot product, the angle between the two veators (x1, z2) and
y := (y1,y2) is measured using

1 ey

len(x)len(y) 3.17)

angle := cos™
Two vectors are said to be orthogonatik § = 0, which implies that: e y = 0.
Now, we generalize this in the following definition.

Definition Let (V, (x,*)) be an inner product space. We say thay € V' are
orthogonal if and only ifx, y) = 0.

In this chapter, it is understood that the vector space isaariproduct space.
Consider a vector spadé. Letx € V be a vector. Then, consider the following
set:

A ={y eV :(z,y) =0} (3.18)

It is easy to see that the sét" is a subspace. Now consider any veatos V.
Intuitively, we see that the differenee := v — ax should be orthogonal to the
span{z} for some properly chosem € R. Now, let us investigate the value af
for which this is true. We need to check(if — ax, z) = 0:

0 = (v—ax,az) (3.19)
= afv,z) —ao?(z, 1) (3.20)
sat = E; ii (3.21)

Thus,w = v — a*z € AL, which implies that = o*z + w. This can interpreted
as any vector it/ can be written as the sum of a vector in the span ahd a
vector in the orthogonal compliment of the spancof

Now, we shall see if we can generalize this to an arbitrarysgabe ofV'.
Towards, this we need the notion of projection of a vectoo@subspace. First,
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let us look at the projection of one vector, say¥ V' onto another vector, sayec

V', denotedProj, (u). This makes sense only when the two vectors are different in
the sense thapan{u} # span{v}. Our intuition inR? suggests the following
simple definition®

Proj, (u) == o), (3.22)

(u, u)
Now, it is easy to see that the vector= Proj,(u) — u is orthogonal ta. Thus,
beginning with two vectors, we have found two different west: andv that are
orthogonal to each other, and they span the same space af thahdu. Gen-
eral version of this method is called Gram-Schmidt orth@diaation procedure,
which is explained below.

3.1.1 Gram-Schmidt Orthogonalization

Consider a vector spadéwith a set of baseévy, ..., v,}. Now, the procedure is
as follows:

o Lety; := .
e Obtain an orthogonal vectas by using the vector, as

Vg = Vg — Pl’ij (’Uz). (323)

e The third vectomw; which is orthogonal to both; andw, is obtained as

Ug = Vg — Projm (’U3) — PI’O_L—)2 (Ug). (324)

1An interesting observation is that the vectot: = L) s a projection ofv ontozx.

<I,I>
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e Thei-th vector,; = 1,2,...,nis obtained as follows:
i—1
Vi 1= UV — Z Proj@j (Ui). (325)
j=1

It is easy to see that the above procedure leads to a set ofyortal vectors start-
ing from a set of bases vectors. The following theorem stht&sthe orthogonal
vector thus obtained still retains the bases property.

Theorem 21 Let the bases vector of a vector spacee{v,, ..., v,}.
Let {1, ...,0,} be the corresponding orthogonal vectors obtained
by applying Gram-Schmidt orthogonalization procedure. effh
{v1,...,0,} is also a bases.

Proof: First, let us prove linear independency {af;, ..., v,}, i.e., we need to
prove that

n
E o;U; = 0
i=1

impliesa; = 0 for all 1 <1 < n. Taking the inner product of the above equation
with v;, we geto; (v;, v;) = 0. Since(v;, v;) > 0, we haven; = 0, and this is true
forall 1 <i < n. Thus, all ofe;’s = 0. This proves linear independency. Now,
since the vector space is of dimensionand the sefv,, ..., 7,} hasn linearly
independent vectors, it should span the space, which ptbhedbeorem(]

As a simple consequence of the above, we have:

Lemma5 Let{vy,...,v,} be an orthogonal bases vector. Then,
{01,...,0,}, where
. (3
Vi = T—
o]

is an orthonormal bases.

Proof: Easy exercise.]
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ExerciseLet VV be a vector space, and [Bf be a subspace. Prove that any
vectorv € V can be written as = w + w, for somew € W andw* € W+.

It is easy to see that the inner product is a linear map on tb®repace. In
fact, we have seen in the previous chapter that it is calleditiear functionals.
In the following theorem, we show that other than the innedpcts, there are no
other linear functionals.

Theorem 22 (Riesz-Representation theorem) Given any linear map
T :V — T, there exists a uniqug € V' such that

Tx = (x,y) (3.26)

for all z € v.

Proof: Suppose thdt'z = 0 for all x € V, then choosg = 0. Let us assume that
there exists an # 0 such that/’x # 0. Consider,

N:={z€V :Tz=0}.

Clearly, N is a subspace (why?). If at all there exists a representatiom (3.26),
theny L N, i.e.,
(z,4) =0

for all z € N. So, we have to search forrac N*. Towards this, choose any
x € VandTz # 0. Consider,

z:=(Ty)x — (Tx)y.

SinceT'z = 0, we havez € N. Thus, we need to chooseyasuch thatz, y) = 0
for all z € V. Substituting forz in (z, y) = 0, we get

(Ty)x = (Tz)y,y) = 0 (3.27)
=Ty = J*Z) (z,y) . (3.28)

The proof is complete by choosi%y as our new;. O
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Remark It is worthwhile noting that the above proof is general aad be
easily extended to infinite dimensional Hilbert spaces.

3.2 Norms on Linear Transformations

In the previous section, we studied the norm of a vector incorespace. The
main motivation for studying norms on linear transformasias justified by the
following simple example. Let us consider a simple modelohtiypically arises
in communication and signal processing problems; the orestifhating the un-
known matrix from a given set of noisy measurements:

Y = HS + W, (3.29)

where all the matrices above belongto™. GivenY andH, one is interested in
finding S. This can be posed as the following optimization problem:

min ||Y — HX|?, (3.30)
XEC’!LX’!L
where|| « || is @a norm on the set of matrices. The problem above naturaftyeshds
for a distance notion on the set of matrices, which is the namc of study of
this section.

3.2.1 Bounded Linear Functions

In this subsection, we shall use the definition of a norm ofcordo define a norm
on linear functions. One way to measure the length of a litreasformation is
to see the magnitude of the amplification tiiatesults in relative to the length of
the vector. This is possible only if the length of the vecsdiinite. This motivates
the following definition.

Definition LetT : V — W be a linear map from the vector spade ||||y) to a
vector space¢WV, ||||w). We say that the map is bounded if there exists/ < co
such that

[ T]] < M|
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forallz € V.

Note that the set of matrices are bounded linear transfoomsat Now, con-

sider the following set
Ny = {M -xev}. (3.32)

el
In the above, we have dropped the subscript in the norm defiras it is evident
from the context. Itis easy to see titat. 75l < M < oo. Therefore, the se¥,

is bounded, which implies that there exists a supremum elerii@us, we define
the supremum olV;, as the “induced norm” of

Definition The induced norm or the operator norm of a linear transfaomat :
V — W is defined as

7)) = sup ), (332
zeV ||.CE'||
Theorem 23 The function off’ : V' — W defined by
1T = sup 122 (3.33)
eV ||2]
is a norm.

Proof: It follows from the definition of the norm on the vector spéaat||7'|| > 0.
Suppose if|T'|| = 0, then

[ T]| _

vev 2l

|7 _
fal

0= 0 (3.34)

forall x € V, which is possible only whehiz = 0 for all z € V. This implies that
T =0.If T =0,then|T| = 0 (trivial!). Consider any two linear transformations
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T, and7;. Then,

T+ T
Ty + Ta|| = sup—”( 1+ el (3.35)
eV ||l
T+ T
_ Supw (3.36)
zev Iz
< | Tz|| + || Tox] (3.37)
- zeV H'TH
T T
< ITill o W22 na (3.38)
cev ||z vev |7
= |70l + |12, (3.39)

which verifies the triangle inequaliti/
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